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Dynamic life tables and projections for the ecuadorian 
population using the Lee-Carter model 
Tablas de vida dinámicas y proyecciones para la población ecuatoriana utilizando el modelo 
de Lee-Carter 
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Abstract 
Static mortality tables underestimate the life expectancy of individuals when used over extended 
periods of time, since they do not take into account the gradual decrease in mortality due to 
improvements in living conditions. In light of this, we propose pivot tables that take into account the 
effect of chronological time on mortality. Our research presents the Lee-Carter model for the 
construction of pivot mortality tables and the projection for the ecuadorian population. Population 
death data corresponding to the 1990-2016. 
Keywords: Pivot mortality tables, Lee-Carter model, demographics,  time series 
 
Resumen 
Las tablas estáticas de mortalidad subestiman la esperanza de vida de los individuos cuando se utilizan 
durante largos períodos de tiempo, ya que no tienen en cuenta la disminución gradual de la mortalidad 
debido a las mejoras en las condiciones de vida. A la luz de esto, proponemos tablas dinámicas que 
tienen en cuenta el efecto del tiempo cronológico sobre la mortalidad. Nuestra investigación presenta 
el modelo de Lee-Carter para la construcción de tablas pivote de mortalidad y la proyección para la 
población ecuatoriana. Datos de defunciones poblacionales correspondientes al período 1990-2016.   
Palabras clave: Tablas pivote de mortalidad, modelo de Lee-Carter, datos demográficos, series 
temporales 
 

1. Introduction   

Issues of demographic dynamics have been the subject of study and constant reflection since the appearance of 
the world's first urban settlements. Demographic dynamics relates to how the population reproduces and dies, 
as well as the settlement and depopulation of certain geographic areas. These dynamics were of interest to even 
the oldest cultures, be it for religious, social, economic, political or military reasons. The importance of 
quantifying human resources led to population counts among even the most ancient peoples. From the analysis 
of these data, a set of knowledge and research methods was created. This became a discipline called 
“Demography” (Ortiz, Serrano, & Vásquez, 2011). 
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In demography, mortality is one of the most important components in determining changes in population 
composition and size. The main conflict faced by a country is population growth. The idea of unstoppable growth 
has led leaders to question the scope of a certain standard of living for the population. Mortality thus takes on 
great importance when analyzing aspects related to its levels and its impact on population segmentation by age 
and gender, which are used as indices of populational health and living conditions (CELADE-CEPAL, 2014) 

Mortality studies are usually carried out using mortality tables or life tables. When used over long periods of 
time, classic (static) mortality tables tend to underestimate life expectancy: they fail to take into account the 
gradual decrease of mortality over the years, as living conditions improve and population life expectancy 
increases.  

It is therefore important that the effect of calendar time (chronological time) on mortality be taken into 
consideration, and this gave rise to pivot tables. Hence, the objective of this work is to create a pivot life table 
for the Ecuadorian population, which will create a projection through 2025 using the Lee-Carter model.   

2. Metodology: Lee-Carter Model 

The additive-multiplicative model (LC) used in this research was developed in 1992 by Lee Ronald and Lawrence 
Carter. It used mortality data in the US for a period between 1933 and 1987 and obtained predictions from 1990 
to 2065. In their work “Modeling and Forecasting US Mortality”, they describe a parametric model in which they 
adjust a linear function to the logarithms of the central mortality rates observed for each specific age group, and 
represent the level of mortality through a single intensity index𝑘(𝑡) (dependent on each period t). Hence, the 
parameters of the function depend on biological time or age x and on chronological or calendar time t 
(unobserved variable). 

2.1. Approach of Model 
Lee and Carter propose a model based on the hypothesis of the existence of a linear relationship between the 
logarithms of the observed central mortality rates.𝑚(𝑥, 𝑡) and explanatory factors; age𝑥 (biological time) and 
the independent variable𝑘(𝑡) (not observed) dependent on the chronological time t. The mathematical 
formulation is expressed as follows: 

ln[𝑚(𝑥, 𝑡)] = 𝑎(𝑥) + 𝑘(𝑡)𝑏(𝑥) + 𝜀(𝑥, 𝑡)   (1) 

which, applying properties of logarithms, can be expressed in an equivalent manner as: 

𝑚(𝑥, 𝑡) = 𝑒!(#)%&(')((#) + 𝜀′(𝑥, 𝑡)        (2) 

where,𝑎(𝑥) is a constant that depends only on age and describes the general period of the mortality 
diagram𝑘(𝑡), 𝑏(𝑥) is a constant, dependent on age and representing the intensity in the growth or decrease of 
the mortality rate over time. It also expresses the rate of change of age composition in regard to the time affected 
by the parameter𝑘(𝑡). 

)
)'
[𝑙𝑛	𝑚(𝑥, 𝑡)] = 𝑏(𝑥) )&(')

)'
	       (3) 

Although theoretically this parameter can be negative for certain ages, in practice, the authors determined that 
this is not possible in the long term. Information errors or specific events such as wars, epidemics, etc., cause 
changes in mortality. 

𝜀(𝑥, 𝑡): represent “white noise” type errors, dependent on time and age. They are interpreted as the specific 
historical influences of each specific age not explained by the model. 
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2.2. Model Adjustment 
Depending on the proposed model, the next step would be to estimate the parameters𝑎(𝑥), 𝑏(𝑥)	𝑦	𝑘(𝑡). 
Therefore, suppose that we have mortality information for a set of ages𝑥 = 𝑥*, 𝑥+, … , 𝑥,-*, 𝑥,  and a set of 
calendar years, 𝑡 = 𝑡*, 𝑡+, … , 𝑡.-*, 𝑡..  

In this case, model (1) represents a system of 𝑟𝑥𝑛 equations with 2𝑟 + 𝑛 unknowns. It can be written in matrix 
form as: 

𝑀!"# = 𝐴!"# +𝐾!"$. 𝐵$"# 
As is evident, the system has infinite solutions. To obtain a unique solution to the LC model, the authors propose 
that the following restrictions be added to model (1): 

∑ 𝑏#
#!
#/#" = 1			𝑦		 ∑ 𝑘'.

'/* = 0			(3.1) 

To estimate the parameters𝑎(𝑥) and𝑏(𝑥),	∀𝑥 and the first estimate of 𝑘(𝑡), ∀𝑡 the method of least squares is 
used, with which we obtain: 

∑ 𝑎(𝑥)#!
#/#" =

∑ ∑ 12[4(#,')]#!
#$#"

%
&$"

.
     (4) 

That is, the 𝑎(𝑥) are the averages of ln[𝑚(𝑥, 𝑡)] over time. 

Then, the 𝑎(𝑥) are obtained directly from the initial conditions, but we could not obtain the𝑏(𝑥) using normal 
regression methods. This is because the right side of the expression we have a function in which unknown 
mortality rates 𝑘(𝑡) appear. To adjust the model, other procedures, such as singular value decomposition (SVD), 
and Newton-Raphson approximation, are used. 

2.3. Model Forecast 
After having chosen the model that best fits the mortality rates, it is necessary to carry out the mortality rate 
forecast 𝑘(𝑡), using a stochastic time series model. Here, we use the Box-Jenkins methodology, described above.  

In their work, Lee and Carter (1992), proposed a model in which the death rate 𝑘(𝑡), behaves according to the 
expression:  

𝑘(𝑡) = 𝑐 + 𝑘(𝑡 − 1) + 𝜖(𝑡)      (5) 

where, 

𝑐 is a constant term and 𝜖(𝑡)	 is white noise, which responds to the distributed error as a normal random variable 
with a mean of zero and constant variance𝜎+.  

According to the Box-Jenkins methodology, if the mortality rate𝑘(𝑡), behaves as an integrated autoregressive 
process of moving averages (ARIMA) of order (p, d, q), then;  

Ψ(𝐵)(1 − 𝐵))𝑘(𝑡) = Υ(B)𝑒(𝑡)      (6) 

where: Ψ(𝐵) and Υ(B) are polynomials of degrees p and q, respectively; B is known as the delay operator and it 
fulfills that: 

𝐵7𝑘(𝑡) = 𝑘(𝑡 − 𝑗)         (7) 

Considering the trends in the model (18), as a deterministic function of time as recommended by the 
methodology; the equation can be expressed in the form:  
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Ψ(𝐵)(1 − 𝐵))𝑘(𝑡) = Υ8 + Υ(B)𝑒(𝑡)   (8) 

where the constant term is estimated through:  

�̂�(𝑡) = ∑ "#%&
%'(
$%&

= ∑ ∇((*)&
%'(
$%&

= ∑ ,((*)%((*%&)-&
%'(

$%&
        (9) 

As a result, we obtain that the mortality rate forecast is carried out by applying the expression (5) or (7), as 
appropriate. 

Using the predicted mortality rate, the value of the central mortality rates is obtained using the expression (1), 
keeping the estimated vector values constant 𝑎(𝑥)	𝑦	𝑏(𝑥). 

3. Results and Discussion 

In this section, a dynamic life table is constructed that allows the behavior of Ecuadorian mortality to be modeled 
during the 1990-2016 period. Predictions for future years are then made based on the application of the Lee-
Carter model.   

3.1. Model Forecast 
When preparing mortality tables, gross central mortality rates must be obtained 𝑚(𝑥, 𝑡). This necessitates the 
collection of empirical data on mortality; thus the importance of obtaining information related to deaths and the 
population. 

To estimate and carry out mortality projections, the time interval 1990-2016 is used as the base period. Data 
during this period on the Ecuadorian population and deaths, by simple ages and gender, is taken into 
consideration. This information is available on the website of the Ecuadorian Institute of Statistics and Censuses 
(INEC, 2019) and in the report “Ecuador: Population estimates and projections 1950-2010 (CONADE, 1993).  

The population data used are the result of the intercensal adjustment, which considers an age range from 0 to 
100 years1. In order to purify the database and correct errors arising from age misstatements in the population 
censuses (an error that significantly affects the data structure, creating peaks on the distribution curve of the 
population and deaths), smoothing methods are employed that use spline interpolation curves. 

Deaths are continuously recorded using death certificates. The data is processed by the National Civil Registry 
Office of Ecuador (INEC), which is in charge of certifying deaths, and can be found on the INEC website. 

3.2. Projections 
Once the information was processed, life tables were constructed for the 1990-2016 period. To carry out 
population projections through the year 2025, mortality rates are adjusted using the Lee & Carter model, as 
described. The adjustment is made with smoothed data for the period 1990-2016, and using an age range from 
0 to 100 years.  

Estimation of mortality rates𝑞(𝑥, 𝑡). The first step in applying the Lee-Carter model is the calculation of gross 
mortality rates. Although there are several methods for this, in this work the one proposed by (Debón, Montes, 

 
 
1 The population projection for the years 1990-2016 corresponds to estimates based on the 2010 Population Census. 
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& Sala, 2008) is used. It is based on the ratio between the estimate of the population initially exposed to risk, 
𝐸𝑥𝑡, and the number of deaths, 𝑑𝑥𝑡, for each age x. 

𝑞K(𝑥, 𝑡) = )(#,')
9(#,')

= 8,:)(#,')%8,:)(#,'%*)
;(#,')%8,:)(#,')

      (10) 

Where, 𝑑(x, t)	 is the number of deaths at age x in year t, 𝑑(𝑥, 𝑡 + 1) is the number of deaths at age x in the year 
𝑡 + 1, and𝑃 (x, t) is the population that is x years old as of December 31 of year t. 

The author also proposes using the expression 

𝑞K(𝑥, 𝑡) = <')(#,')%=')(#,'%*)
;(#,')%<')(#,')

 for age zero; 

due to the high concentration of deaths in the first months of life. In this equation, 𝛼8 represents the proportion 
of deaths in year t with less than one year of age, among those born that same year, and 𝛽8 the proportion of 
deaths in year t+1 with less than one year of age among those born in year t. For the Ecuadorian case, we have 
𝛼8 ≈ 0.75 and 𝛽8 ≈ 0.25. Hence, for age zero, the following relationship will be used:  

𝑞K(0, 𝑡) = 8.?:)(#,')%8.+:)(#,'%*)
;(#,')%8.?:)(#,')

      (11) 

In the case of advanced ages, some authors use a log-quadratic regression model since the number of deaths 
and those exposed to risk is low. This is why the expression previously given prevents valid inferences from being 
drawn. We thus use the methodology described by (Denuit & Goderniaux, 2005) is used for ages over 70 years: 

ln(𝑞(𝑥, 𝑡)) = 𝑎(𝑡) + 𝑏(𝑡)𝑥 + 𝑐(𝑡)𝑥+ + 𝜀(𝑥, 𝑡); 	𝜀(𝑥, 𝑡)~𝑁(0, 𝜎+) 

s.a: X
𝑞4!#(𝑥) = 1
)@()#(#)

)#
= 0  

Parameters𝑎(𝑡), 𝑏(𝑡)	𝑦	𝑐(𝑡)	 are estimated by least squares, and the cut-off age 𝑥8 will be set using the 
maximum of the determination coefficient as the optimal criterion𝑅+. 

Considering an Ecuadorian population with a maximum of 100 years of age, the determination coefficients allow 
70 to be set as the cut-off point for the male population and 80 for the female population. 

Parameter estimation𝑎(𝑥),𝑏(𝑥) and 𝑘(𝑡). Once a smoothed mortality surface is obtained, we will estimate the 
parameters 𝑎(𝑥),𝑏(𝑥) and 𝑘(𝑡) for the model. To do this, we use “demography” from the R language. 

The estimated values of the parameter 𝑎(𝑥), in different ages for both sexes, are presented in Figure 1.  It shows 
the high mortality values in the first year of life, which decrease rapidly as the child ages, approximately up to 12 
years of age. Then mortality increases again, up to around 20 to 25 years. In the case of the Ecuadorian 
population, this is the result of deaths caused by external causes, which the authors call an "accident hump". 
From this age onwards we can see that mortality remains stable until approximately 40 years of age, and then 
increases exponentially in older adults.   
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Fig. 1 
Estimation of the parameter ax 

using the 1990-2016 period 

 
Figure 2 describes the estimation of the parameter b (x); that is, the variation in mortality at age x, where the 
changes in general mortality levels at each age can be observed. In the first years of life, variation reaches high 
values that decrease sharply, arriving to a minimum at 5 years of age. In adulthood, the impact of the reduction 
oscillates, presenting a relative maximum at 65 before decreasing again from approximately from 65-70, up until 
100 years of age. 

Fig. 2 
Estimation of the parameter bx  

using the 1990-2016 period 

 
Next, the values of the adjusted mortality pattern 𝑘(𝑡) are given for the 1990-2016 period.   
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Table 1 
Adjusted mortality  

pattern for both sexes. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 3 shows the variations in the mortality pattern for the 1990-2016 period, which reflect a decreasing linear 
trend in mortality for both sexes. We can therefore conclude that mortality among the Ecuadorian population 
has decreased over this period. 

Fig. 3 
Variation of the parameter k (t)  

in the period 1990-2016 

 

Year 𝒌(𝒕)- male 𝒌(𝒕)- female 
1990 22.301263 29.704865 
1991 19.689281 27.665478 
1992 17.412899 23.686444 
1993 14.460630 18.281796 
1994 9.785869 14.598014 
1995 8.125081 11.737452 
1996 7.486419 9.684929 
1997 7.017409 8.581664 
1998 6.654981 7.949272 
1999 4.625118 6.469571 
2000 1.784073 3.611668 
2001 0.435236 -1.972476 
2002 -2.506757 -6.642082 
2003 -5.617076 -8.850184 
2004 -6.674812 -11.984252 
2005 -8.703796 -12.265755 
2006 -9.052265 -14.830417 
2007 -12.542810 -16.004875 
2008 -13.706592 -17.910271 
2009 -15.647146 -19.786184 
2010 -18.286590 -23.681760 
2011 -20.205803 -25.367592 
2012 -21.845880 -27.079200 
2013 -23.593410 -29.559350 
2014 -25.491240 -32.039490 
2015 -27.476360 -34.519640 
2016 -29.448600 -36.999790 
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Forecast. To obtain the projections, we must adjust a time series model to the estimated sequence of mortality 
rates, {𝑘(𝑡)}. Here, we will use the “automatic forecasts” procedure in the Statgraphics processing package. This 
procedure tests several models and selects the one with the best performance according to the  criteria specified.  

Males. Comparing the results from five tests and adjusting different models to the data for males, we can deduce 
that ARIMA is the most appropriate model (0,2,1) (= 0.998835), since it has the lowest value of the Akaike 
Information Criterion (AIC). 

Forecast Summary. The Table2 summarizes the statistical significance of the terms in the forecasting model and 
the model performance. The P-value for the MA (1) term is less than 0.05, so it is statistically different from 0.  
The estimated standard deviation of the input white noise is equal to 1.0051. Each of the performance statistics 
is based on the one-step ahead forecast errors, which are the differences between the data at time t and the 
predicted value at time 𝑡 − 1.  The first three statistics measure the magnitude of the errors. The last two 
statistics measure the bias. 

Table 2 
ARIMA Model Summary 

 
 
 
 
 
 
 
 
 
 

Estimated autocorrelations for residuals. The  

Table shows the estimated autocorrelations between the residuals at different lags and the 95% probability limits. 
The lagged autocorrelation coefficient k measures the correlation between the residuals at time t and at time 
𝑡 − 𝑘. If the probability limits at a particular lag do not contain the estimated coefficient, there is a statistically 
significant correlation to that lag, at the 95.0% confidence level. In this case, none of the 24 autocorrelation 
coefficients is statistically significant, meaning that the time series may well be completely random (white noise).  

Table 3 
Estimated autocorrelations for residuals. 

Lag Autocorrelation Std. Error Limit at 95.0% 
Lower 

Limit at 95.0% 
Upper 

1 0.0798702 0.2 -0.391994 0.391994 

2 -0.0202401 0.201272 -0.394486 0.394486 

3 -0.227828 0.201353 -0.394646 0.394646 

4 -0.340191 0.211413 -0.414363 0.414363 

5 -0.121613 0.23228 -0.455261 0.455261 

6 -0.114535 0.234813 -0.460226 0.460226 

7 0.0542306 0.237037 -0.464585 0.464585 

8 0.238775 0.237533 -0.465557 0.465557 

Parameter Estimated Std. Error t P-value 
MA (1) 1.06272 0.0138314 76.8336 0.000000 

Statistical Estimate 
Root mean square error (RMSE) 0.998835 
Mean absolute error (MAE) 0.725357 
Mean absolute percentage error (MAPE)  
Mean error (ME) 0.0211036 
Mean percentage error (MPE)  
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Estimated partial autocorrelations for residuals. The 

Table 4 shows the estimated partial autocorrelations between the residuals at different lags and the 
95% probability limits. The partial autocorrelation coefficient at lag k measures the correlation between the 
residuals at time t and at time t+k, discounting all minor lags for the correlation. It can be used to judge the 
order of the autoregressive model necessary to fit the data. If the probability limits at a particular lag do 
not contain the estimated coefficient, there is a statistically significant correlation to that lag, with a confidence 
level of 95.0%. In this case, none of the 24 partial autocorrelation coefficients is statistically significant with a 
95.0% confidence level. 

Residual Randomness Test. Table 5 shows the results of the randomness tests for the residuals and the normal 
probability for the residuals. Three tests have been run to determine whether or not the residuals form a random 
sequence of numbers (white noise). The first test counts the number of times the sequence was above or below 
the median.  The number of such runs equals 13, compared to an expected value of 13.0 if the sequence were 
random. Since the P-value for this test is greater than or equal to 0.05, the hypothesis that the residuals are 
random cannot be rejected with a confidence level of 95.0% or greater. The second test counts the number of 
times the sequence rose or fell. The number of such runs equals 14, compared to an expected value of 16.3333 
if the sequence were random. Since the P-value for this test is greater than or equal to 0.05, the hypothesis that 
the series is random cannot be rejected, with a confidence level of 95.0% or greater. The third test is based on 
the sum of squares of the first 24 autocorrelation coefficients.  Since the P-value for this test is greater than or 
equal to 0.05, the hypothesis that the series is random cannot be rejected, with a confidence level of 95.0% or 
greater. 

Table 4 
Estimated partial autocorrelations for residuals. 

Lag Autocorrelation Std. Error Limit at 95.0% 
Lower 

Limit at 
95.0% 
Upper 

1 0.0798702 0.2 -0.391994 0.391994 
2 -0.0267903 0.2 -0.391994 0.391994 
3 -0.225629 0.2 -0.391994 0.391994 
4 -0.323688 0.2 -0.391994 0.391994 
5 -0.120114 0.2 -0.391994 0.391994 
6 -0.20916 0.2 -0.391994 0.391994 
7 -0.137991 0.2 -0.391994 0.391994 
8 0.0575542 0.2 -0.391994 0.391994 

Table 5 
Residual randomnes tests 

Tests Z statistic for large 
samples 

P-value

Runs above or below the median -0.208712 1.0 
Runs up and down 0.902975 0.366537 

Box-Pierce Test 6.55718 0.476393 
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Fig. 4 
Normal probability for residuals 

 

Finally, the Table 6 shows the mortality rate estimates for the 2017-2025 period for males, as well as the 
confidence intervals, assuming only the error in the prediction of the mortality rate k (t) obtained from the ARIMA 
model adjusted to the time series. 

Table 6 
Prediction of the mortality rate for males 

Period Forecast 
𝒌(𝒕) 

Limit at 95.0% 
Lower 

Limit at 95.0% 
Upper 

2017 -31.5103 -33.5847 -29.4358 
2018 -33.572 -36.4151 -30.7288 
2019 -35.6336 -39.0063 -32.2609 
2020 -37.6953 -41.4651 -33.9255 
2021 -39.757 -43.8345 -35.6795 
2022 -41.8187 -46.1377 -37.4997 
2023 -43.8804 -48.389 -39.3717 
2024 -45.942 -50.5984 -41.2856 
2025 -48.0037 -52.7735 -43.234 

Fig. 5 
Projections for k(t). Males 
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Females. Comparing the results from five tests and adjusting different models to the data for females, we can 
deduce that ARIMA is the most appropriate model (1,2,1) (= 0.998835), since it has the lowest value of the Akaike 
Information Criterion (AIC).  

Forecast Summary. Table 7 summarizes the statistical significance of the terms in the forecasting model and the 
model performance. The P-value for the MA (1) term is less than 0.05, meaning that it is statistically different 
from 0. For the AR (1) term it is greater than or equal to 0.05, meaning that it is not statistically significant. We 
should therefore consider reducing the order of the AR term to 0.  The estimated standard deviation of the input 
white noise is equal to 1.22695. Each of the performance statistics is based on the one-step ahead forecast errors, 
which are the differences between the data at time t and the predicted value at time 𝑡 − 1. The first three 
statistics measure the magnitude of the errors. The last two statistics measure the bias.   

Table 7 
ARIMA Model Summary 

Parameter Estimated Std. Error t P-value 
AR (1) 0.384722 0.197158 1.95133 0.063301 
MA (1) 1.07807 0.00801377 134.527 0.000000 

 
 
 
 
 
 
 
 
 
Estimated autocorrelations for residuals. The Table 8shows the estimated autocorrelations between the residuals 
at different lags and the 95% probability limits for females. The lagged autocorrelation coefficient k measures 
the correlation between the residuals at time t and at time 𝑡 − 𝑘. If the probability limits at a particular lag do 
not contain the estimated coefficient, there is a statistically significant correlation to that lag, at the 95.0% 
confidence level. In this case, none of the 24 autocorrelation coefficients is statistically significant, meaning that 
the time series may well be completely random (white noise).   

Table 8 
Estimated autocorrelations for residuals. 

Lag Autocorrelation Std. Error Limit at 95.0% 
Lower 

Limit at 95.0% 
Upper 

1 0.0491866 0.2 -0.391994 0.391994 
2 0.114086 0.200483 -0.392941 0.392941 
3 -0.290196 0.203064 -0.397998 0.397998 
4 -0.230809 0.219025 -0.429282 0.429282 
5 -0.323291 0.228547 -0.447945 0.447945 
6 -0.0547692 0.246161 -0.482467 0.482467 
7 0.0154633 0.246648 -0.483421 0.483421 
8 0.278373 0.246686 -0.483497 0.483497 

 

Statistical Estimate 
Root mean square error (RMSE) 1.22037 
Mean absolute error (MAE) 0.888924 
Mean absolute percentage error (MAPE)  
Mean error (ME) -0.0863268 
Mean percentage error (MPE)  
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Estimated partial autocorrelations for residuals. The Table 9 shows the estimated partial autocorrelations 
between the residuals at different lags and the 95% probability limits. The partial autocorrelation coefficient at 
lag k measures the correlation between the residuals at time t and at time t+k, discounting all minor lags for the 
correlation. If the probability limits at a particular lag do not contain the estimated coefficient, there is a 
statistically significant correlation to that lag, with a confidence level of 95.0%. In this case, none of the 24 partial 
autocorrelation coefficients is statistically significant with a 95.0% confidence level. 

Residual Randomness Test. Table 10 shows the results of the randomness tests for the residuals, and figure 6, 
the normal probability for the residuals. Three tests have been run to determine whether or not the residuals 
form a random sequence of numbers (white noise). In the first test the number equals 12, compared to an 
expected value of 13.0 if the sequence were random. Since the P-value for this test is greater than or equal to 
0.05, the hypothesis that the residuals are random cannot be rejected with a confidence level of 95.0% or greater. 
For the second tests the number of runs equals 14, compared to an expected value of 16.3333 if the sequence 
were random. 

Table 9 
Estimated partial autocorrelations for residuals. 

Lag Autocorrelation Std. Error Limit at 95.0% 
Lower 

Limit at 95.0% 
Upper 

1 0.0491866 0.2 -0.391994 0.391994 
2 0.111937 0.2 -0.391994 0.391994 
3 -0.305239 0.2 -0.391994 0.391994 
4 -0.23228 0.2 -0.391994 0.391994 
5 -0.275356 0.2 -0.391994 0.391994 
6 -0.111382 0.2 -0.391994 0.391994 
7 -0.0814796 0.2 -0.391994 0.391994 
8 0.0889909 0.2 -0.391994 0.391994 

 

Since the P-value for this test is greater than or equal to 0.05, the hypothesis that the series is random cannot be 
rejected, with a confidence level of 95.0% or greater. In the third test, the P-value is greater than or equal to 
0.05, so the hypothesis that the series is random cannot be rejected, with a confidence level of 95.0% or greater.  

Table 10 
Residual randomness tests. 

 
 
 
 
 
 

 

 

 

 

 

Tests Z statistic for large samples P-value 
Runs above or below the median 0.208712 0.834669 

Runs up and down 0.902975 0.366537 
Box-Pierce Test 8.45421 0.206678 
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Fig. 6 
Normal probability for residuals 

 
Finally, table 11 shows the mortality rate estimates for the 2017-2025 period for females, as well as the 
confidence intervals, assuming only the error in the prediction of the mortality rate k (t) obtained from the ARIMA 
model adjusted to the time series. 

 Table 11 
Prediction of the mortality rate for females 

Period Forecast 
𝒌(𝒕) 

Limit at 95.0% 
Lower 

Limit at 95.0% 
Upper 

2017 -39.5114 -42.0496 -36.9733 
2018 -42.0352 -46.2115 -37.859 
2019 -44.5637 -49.9602 -39.1671 
2020 -47.0939 -53.3979 -40.7899 
2021 -49.6248 -56.6059 -42.6437 
2022 -52.156 -59.6415 -44.6705 
2023 -54.6873 -62.5447 -46.8299 
2024 -57.2186 -65.3441 -49.0931 
2025 -59.75 -68.0616 -51.4383 

 

Fig. 7 
Projections for k(t). Females. 
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4. Conclusions  

According to the results obtained, the following conclusions can be arrived to: 

Pivot life tables allow us to identify the true mortality levels for the male and female population of Ecuador up 
to the present year. This information is fundamental for the country, since it allows policies to be advanced that 
will improve the population's living standards.  

The mortality tables present certain limitations in terms of the bias in data and ages and mortality records 
(resulting from the process of information gathering).  

The results show that women are longer-lived than men: they show higher residual life expectancy values. This 
is particularly due to activities aimed at reducing pregnancy and childbirth risks, among other factors related to 
female mortality.   
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